76 research outputs found

    Assessment of Potential Augmentation and Management Strategies for Razorback Sucker \u3cem\u3eXyrauchen texanus\u3c/em\u3e in Lake Mead and Grand Canyon: A 2021 Science Panel Summary

    Get PDF
    Razorback Sucker Xyrauchen texanus is a large-bodied, long-lived species endemic to the Colorado River Basin. This species historically ranged throughout the basin from the Colorado River delta in Mexico to Wyoming and Colorado. Currently, the species persists ,in a small portion of its historical range with the help of intensive management efforts including augmentation. Recruitment to adult life stages is extremely limited in the wild, but is documented consistently in Lake Mead. Research and monitoring efforts in Lake Mead are ongoing since 1996 and have recently expanded to include the Colorado River inflow area and portions of lower Grand Canyon. Despite evidence of recruitment, the current population size in Lake Mead and Grand Canyon is believed to be small (data) and susceptible to stochastic effects. This raised interest in the potential to augment the population to prevent loss of genetic diversity and increase abundance and distribution in general, as well as explore recruitment bottlenecks. To address critical uncertainties surrounding this management option and to brainstorm other potential options, a Planning Committee and Steering Committee made up of representatives of state (Arizona, Nevada), tribal (Hualapai Tribe, Navajo Nation), and federal (Bureau of Reclamation, National Park Service, and U.S. Fish and Wildlife Service) management agencies convened an Expert Science Panel (ESP; 2021), to consider augmentation and management strategies for Razorback Sucker in Lake Mead and Grand Canyon. The purpose of this report is to summarize those findings

    Peroxisome Proliferator-Activated Receptor-Gamma Agonists Suppress Tissue Factor Overexpression in Rat Balloon Injury Model with Paclitaxel Infusion

    Get PDF
    The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF), a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK), which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1), was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI) in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group) with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001) in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted

    Acute myocardial infarction after botulinum toxin injection

    Full text link

    Evidence for preferential proteolytic cleavage of one of the two fibronectin subunits and for immunological localization of a site distinguishing them

    No full text

    Chemically pure beta-tricalcium phosphate powders: Evidence of two crystal structures

    No full text
    The question whether beta-tricalcium phosphate (beta-TCP) can form a solid solution with beta-calcium pyrophosphate (beta-CPP) and/or hydroxyapatite (HA) has still not been solved. For this reason, wet-chemically synthesized beta-TCP powders with only 20 ppm Sr (among 43 tested elements) and with different HA and beta-CPP contents, or in other words Ca/P molar ratios, were used. The graphical relationship between these various Ca/P molar ratios determined by X-ray diffraction and by inductively-coupled plasma mass spectrometry showed no discontinuity, indicating the absence of a solid solution between beta-TCP and beta-CPP or HA. Analysis of the beta-TCP lattice parameters as a function of the Ca/P molar ratio revealed a discontinuity at a Ca/P molar ratio of 1.500 and a maximum microstrain. These results indicated that at least two beta-TCP structures co-existed, with variable mixing ratios depending on the Ca/P molar ratio, and with a distinct jump at a Ca/P molar ratio of 1.500
    • …
    corecore